Causal Effect Estimation from Observational and Interventional Data Through Matrix Weighted Linear EstimatorsDownload PDF

Published: 08 May 2023, Last Modified: 03 Nov 2024UAI 2023Readers: Everyone
Keywords: causality, estimator weighting, linear structural causal model, statistical efficiency, causal reasoning, causal inference, treatment effect estimation
Abstract: We study causal effect estimation from a mixture of observational and interventional data in a confounded linear regression model with multivariate treatments. We show that the statistical efficiency in terms of expected squared error can be improved by combining estimators arising from both the observational and interventional setting. To this end, we derive methods based on matrix weighted linear estimators and prove that our methods are asymptotically unbiased in the infinite sample limit. This is an important improvement compared to the pooled estimator using the union of interventional and observational data, for which the bias only vanishes if the ratio of observational to interventional data tends to zero. Studies on synthetic data confirm our theoretical findings. In settings where confounding is substantial and the ratio of observational to interventional data is large, our estimators outperform a Stein-type estimator and various other baselines.
Supplementary Material: pdf
Other Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/causal-effect-estimation-from-observational/code)
0 Replies

Loading