Abstract: Mathematical morphology provides a nonlinear framework for image and spatial data processing and analysis. Although there have been many successful applications of mathematical morphology to vector-valued images, such as color and hyperspectral images, there is still no consensus on the most suitable vector ordering for constructing morphological operators. This paper addresses this issue by examining a reduced ordering approximating the Condorcet ranking derived from a set of vector orderings. Inspired by voting problems, the Condorcet ordering ranks elements from most to least voted, with voters representing different orderings. In this paper, we develop a machine learning approach that learns a reduced ordering that approximates the Condorcet ordering. Preliminary computational experiments confirm the effectiveness of learning the reduced mapping to define vector-valued morphological operators for color images.
External IDs:doi:10.1007/978-3-032-09544-2_32
Loading