ORSI Salient Object Detection via Progressive Semantic Flow and Uncertainty-Aware RefinementDownload PDFOpen Website

Published: 01 Jan 2024, Last Modified: 15 Apr 2024IEEE Trans. Geosci. Remote. Sens. 2024Readers: Everyone
Abstract: With the prosperity of deep learning (DL) techniques, salient object detection in remote sensing images (RSI-SOD) is concomitantly in full flourishing. However, due to the inherent challenges such as uncertainty in object quantities and scales, cluttered backgrounds, and blurred edges arising from shadows, most current approaches struggle for salient feature learning with the aid of heavy model architecture, yet often result in barely satisfactory performance. Some methods compromise model complexity to improve efficiency, albeit with significantly degraded results. To earn a satisfactory balance of efficacy and efficiency, we propose a new network for RSI-SOD, namely semantic flow and uncertainty-aware refinement network (SFANet), based on progressive semantic flow and uncertainty-aware refinement. Specifically, we design a global semantic enhancement block (GSEB) to reduce background interference and accurately localize salient objects of varying quantities and scales, which further consists of three modularized components, i.e., semantic extraction module (SEM), interscale fusion module (IFM), and deep semantic graph-inference module (DSGM). SEM together with IFM contributes to the effective aggregation of multiscale contexts by extracting fused and progressive semantic cues. DSGM performs semantic inference to better localize salient objects with irregularities in scale and topological structure. Furthermore, we present an uncertainty-aware refinement module (URM) to recognize salient objects in cluttered backgrounds and effectively suppress shadows. Extensive experiments are conducted on three RSI-SOD datasets, from which superior results can be achieved by our SFANet, outperforming the other cutting-edge methods. The code is available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/ZhengJianwei2/SFANet</uri> .
0 Replies

Loading