Learning Fair Graph Representations via Automated Data AugmentationsDownload PDF

Published: 01 Feb 2023, Last Modified: 27 Feb 2023ICLR 2023 notable top 25%Readers: Everyone
TL;DR: We propose an automated graph data augmentation method to learn fair graph representations.
Abstract: We consider fair graph representation learning via data augmentations. While this direction has been explored previously, existing methods invariably rely on certain assumptions on the properties of fair graph data in order to design fixed strategies on data augmentations. Nevertheless, the exact properties of fair graph data may vary significantly in different scenarios. Hence, heuristically designed augmentations may not always generate fair graph data in different application scenarios. In this work, we propose a method, known as Graphair, to learn fair representations based on automated graph data augmentations. Such fairness-aware augmentations are themselves learned from data. Our Graphair is designed to automatically discover fairness-aware augmentations from input graphs in order to circumvent sensitive information while preserving other useful information. Experimental results demonstrate that our Graphair consistently outperforms many baselines on multiple node classification datasets in terms of fairness-accuracy trade-off performance. In addition, results indicate that Graphair can automatically learn to generate fair graph data without prior knowledge on fairness-relevant graph properties.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
13 Replies