Unsupervised Semantic Segmentation with Self-supervised Object-centric RepresentationsDownload PDF

Published: 01 Feb 2023, Last Modified: 23 Jan 2025ICLR 2023 notable top 25%Readers: Everyone
Keywords: unsupervised semantic segmentation, object segmentation, object-centric learning
TL;DR: Strong and simple baseline for unsupervised segmentation methods obtained by leveraging and combining object-centric priors.
Abstract: In this paper, we show that recent advances in self-supervised representation learning enable unsupervised object discovery and semantic segmentation with a performance that matches the state of the field on supervised semantic segmentation 10 years ago. We propose a methodology based on unsupervised saliency masks and self-supervised feature clustering to kickstart object discovery followed by training a semantic segmentation network on pseudo-labels to bootstrap the system on images with multiple objects. We show that while being conceptually simple our proposed baseline is surprisingly strong. We present results on PASCAL VOC that go far beyond the current state of the art (50.0 mIoU), and we report for the first time results on MS COCO for the whole set of 81 classes: our method discovers 34 categories with more than 20% IoU, while obtaining an average IoU of 19.6 for all 81 categories.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/unsupervised-semantic-segmentation-with-self/code)
11 Replies

Loading