Probabilistic Tensor Decomposition of Neural Population Spiking ActivityDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 SpotlightReaders: Everyone
Keywords: Probabilistic, Tensor Decomposition, Neuroscience, Spike, Population Activity, Count
Abstract: The firing of neural populations is coordinated across cells, in time, and across experimental conditions or repeated experimental trials; and so a full understanding of the computational significance of neural responses must be based on a separation of these different contributions to structured activity. Tensor decomposition is an approach to untangling the influence of multiple factors in data that is common in many fields. However, despite some recent interest in neuroscience, wider applicability of the approach is hampered by the lack of a full probabilistic treatment allowing principled inference of a decomposition from non-Gaussian spike-count data. Here, we extend the Pólya-Gamma (PG) augmentation, previously used in sampling-based Bayesian inference, to implement scalable variational inference in non-conjugate spike-count models. Using this new approach, we develop techniques related to automatic relevance determination to infer the most appropriate tensor rank, as well as to incorporate priors based on known brain anatomy such as the segregation of cell response properties by brain area. We apply the model to neural recordings taken under conditions of visual-vestibular sensory integration, revealing how the encoding of self- and visual-motion signals is modulated by the sensory information available to the animal.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: https://github.com/hugosou/vbgcp
10 Replies

Loading