I-PHYRE: Interactive Physical Reasoning

Published: 16 Jan 2024, Last Modified: 08 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Intuitive physics, physical reasoning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Build human-level interactive agents that can control the physical dynamics by reasoning, planning, and intervention.
Abstract: Current evaluation protocols predominantly assess physical reasoning in stationary scenes, creating a gap in evaluating agents' abilities to interact with dynamic events. While contemporary methods allow agents to modify initial scene configurations and observe consequences, they lack the capability to interact with events in real time. To address this, we introduce I-PHYRE, a framework that challenges agents to simultaneously exhibit intuitive physical reasoning, multi-step planning, and in-situ intervention. Here, intuitive physical reasoning refers to a quick, approximate understanding of physics to address complex problems; multi-step denotes the need for extensive sequence planning in I-PHYRE, considering each intervention can significantly alter subsequent choices; and in-situ implies the necessity for timely object manipulation within a scene, where minor timing deviations can result in task failure. We formulate four game splits to scrutinize agents' learning and generalization of essential principles of interactive physical reasoning, fostering learning through interaction with representative scenarios. Our exploration involves three planning strategies and examines several supervised and reinforcement agents' zero-shot generalization proficiency on I-PHYRE. The outcomes highlight a notable gap between existing learning algorithms and human performance, emphasizing the imperative for more research in enhancing agents with interactive physical reasoning capabilities. The environment and baselines will be made publicly available.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: datasets and benchmarks
Submission Number: 9
Loading