XREF: Entity Linking for Chinese News Comments with Supplementary Article ReferenceDownload PDF

Published: 01 May 2020, Last Modified: 05 May 2023AKBC 2020Readers: Everyone
Keywords: Entity Linking, Chinese social media, Data Augmentation
TL;DR: We study entity linking for Chinese news comment and propose a novel attention based method to detect relevant context and supporting entities from reference articles.
Subject Areas: Knowledge Representation, Semantic Web and Search, Information Extraction, Applications
Abstract: Automatic identification of mentioned entities in social media posts facilitates quick digestion of trending topics and popular opinions. Nonetheless, this remains a challenging task due to limited context and diverse name variations. In this paper, we study the problem of entity linking for Chinese news comments given mentions' spans. We hypothesize that comments often refer to entities in the corresponding news article, as well as topics involving the entities. We therefore propose a novel model, XREF, that leverages attention mechanisms to (1) pinpoint relevant context within comments, and (2) detect supporting entities from the news article. To improve training, we make two contributions: (a) we propose a supervised attention loss in addition to the standard cross entropy, and (b) we develop a weakly supervised training scheme to utilize the large-scale unlabeled corpus. Two new datasets in entertainment and product domains are collected and annotated for experiments. Our proposed method outperforms previous methods on both datasets.
Archival Status: Archival
7 Replies