Keywords: Protein design, inverse folding, generative modelling, transfer learning
Abstract: We present InvMSAFold, an inverse folding method for generating protein sequences optimized for diversity and speed. For a given structure, InvMSAFold generates the parameters of a pairwise probability distribution over the space of sequences, capturing the amino acid covariances observed in Multiple Sequence Alignments (MSA) of homologous proteins. This allows for the efficient generation of highly diverse protein sequences while preserving structural and functional integrity.
We demonstrate that this increased diversity in sampled sequences translates into greater variability in biochemical properties, highlighting the exciting potential of our method for applications such as protein design. The orders of magnitude improvement in sampling speed compared to existing methods unlocks new possibilities for high-throughput in virtual screening.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4663
Loading