Entropic independence: optimal mixing of down-up random walksOpen Website

2022 (modified: 24 Apr 2023)STOC 2022Readers: Everyone
Abstract: We introduce a notion called entropic independence that is an entropic analog of spectral notions of high-dimensional expansion. Informally, entropic independence of a background distribution µ on k-sized subsets of a ground set of elements says that for any (possibly randomly chosen) set S, the relative entropy of a single element of S drawn uniformly at random carries at most O(1/k) fraction of the relative entropy of S. Entropic independence is the analog of the notion of spectral independence, if one replaces variance by entropy. We use entropic independence to derive tight mixing time bounds, overcoming the lossy nature of spectral analysis of Markov chains on exponential-sized state spaces. In our main technical result, we show a general way of deriving entropy contraction, a.k.a. modified log-Sobolev inequalities, for down-up random walks from spectral notions. We show that spectral independence of a distribution under arbitrary external fields automatically implies entropic independence. We furthermore extend our theory to the case where spectral independence does not hold under arbitrary external fields. To do this, we introduce a framework for obtaining tight mixing time bounds for Markov chains based on what we call restricted modified log-Sobolev inequalities, which guarantee entropy contraction not for all distributions, but for those in a sufficiently large neighborhood of the stationary distribution. To derive our results, we relate entropic independence to properties of polynomials: µ is entropically independent exactly when a transformed version of the generating polynomial of µ is upper bounded by its linear tangent; this property is implied by concavity of the said transformation, which was shown by prior work to be locally equivalent to spectral independence. We apply our results to obtain (1) tight modified log-Sobolev inequalities and mixing times for multi-step down-up walks on fractionally log-concave distributions, (2) the tight mixing time of O(nlogn) for Glauber dynamics on Ising models whose interaction matrix has eigenspectrum lying within an interval of length smaller than 1, improving upon the prior quadratic dependence on n, and (3) nearly-linear time Oδ(n) samplers for the hardcore and Ising models on n-node graphs that have δ-relative gap to the tree-uniqueness threshold. In the last application, our bound on the running time does not depend on the maximum degree Δ of the graph, and is therefore optimal even for high-degree graphs, and in fact, is sublinear in the size of the graph for high-degree graphs.
0 Replies

Loading