Abstract: The main object of study in this thesis is subgroup discovery, a theoretical framework for finding subgroups in data—i.e., named sub-populations— whose behaviour with respect to a specified target concept is exceptional when compared to the rest of the dataset. This is a powerful tool that conveys crucial information to a human audience, but despite past advances has been limited to simple target concepts. In this work we propose algorithms that bring this framework to novel application domains. We introduce the concept of representative subgroups, which we use not only to ensure the fairness of a sub-population with regard to a sensitive trait, such as race or gender, but also to go beyond known trends in the data. For entities with additional relational information that can be encoded as a graph, we introduce a novel measure of robust connectedness which improves on established alternative measures of density; we then provide a method that uses this measure to discover which named sub-populations are more well-connected. Our contributions within subgroup discovery crescent with the introduction of kernelised subgroup discovery: a novel framework that enables the discovery of subgroups on i.i.d. target concepts with virtually any kind of structure. Importantly, our framework additionally provides a concrete and efficient tool that works out-of-the-box without any modification, apart from specifying the Gramian of a positive definite kernel. To use within kernelised subgroup discovery, but also on any other kind of kernel method, we additionally introduce a novel random walk graph kernel. Our kernel allows the fine tuning of the alignment between the vertices of the two compared graphs, during the count of the random walks, while we also propose meaningful structure-aware vertex labels to utilise this new capability. With these contributions we thoroughly extend the applicability of subgroup discovery and ultimately re-define it as a kernel method.
External IDs:dblp:phd/dnb/Kalofolias23
Loading