Differentially private learners for heterogeneous treatment effects

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Causality, differential privacy, treatment effect estimation
Abstract: Patient data is widely used to estimate heterogeneous treatment effects and understand the effectiveness and safety of drugs. Yet, patient data includes highly sensitive information that must be kept private. In this work, we aim to estimate the conditional average treatment effect (CATE) from observational data under differential privacy. Specifically, we present DP-CATE, a novel framework for CATE estimation that is *doubly robust* and ensures *differential privacy* of the estimates. For this, we build upon non-trivial tools from semi-parametric and robust statistics to exploit the connection between privacy and model robustness. Our framework is highly general and applies to any two-stage CATE meta-learner with a Neyman-orthogonal loss function. It can be used with all machine learning models employed for nuisance estimation. We further provide an extension of DP-CATE where we employ RKHS regression to release the complete doubly robust CATE function while ensuring differential privacy. We demonstrate the effectiveness of DP-CATE across various experiments using synthetic and real-world datasets. To the best of our knowledge, we are the first to provide a framework for CATE estimation that is doubly robust and differentially private.
Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3221
Loading