PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization

Published: 16 Jan 2024, Last Modified: 17 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Large Language Models, Expert-level Prompt Optimization, Strategic Planning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: PromptAgent introduces a strategic planning approach to autonomously generate expert-level prompts for advanced LLMs outperforming existing methods across diverse tasks by strategically exploring the prompt space and leveraging error insights.
Abstract: Expert-level prompts, carefully engineered by human experts who have a deep understanding of both large language models (LLMs) and domain knowledge, are the future of prompting and pivotal to harnessing the full power of advanced LLMs. Discovering such prompts with an automated process remains a sought-after and unresolved challenge. Existing prompt optimization techniques, though automated through iterative sampling, often fall short in injecting domain knowledge and exploring the vast prompt space for complex expert-level prompts efficiently. To address this pressing need and achieve expert-level prompting, we introduce PromptAgent, which autonomously discovers prompts equivalent in quality to those handcrafted by experts. At its core, PromptAgent views prompt optimization as a strategic planning problem and employs a principled planning algorithm (rooted in Monte Carlo Tree Search) to strategically explore the vast expert-level prompt space. PromptAgent interacts with the LLM in a human-like trial-and-error manner during the planning, and injects expert-level knowledge by reflecting on model errors and generating insightful error feedback. This novel formulation allows it to iteratively evaluate intermediate prompts, refine them based on errors, simulate future rewards, and search for high-reward paths leading to expert-level prompts. We apply PromptAgent to 12 tasks spanning three practical domains: BIG-Bench Hard (BBH), domain-expert, and general NLU tasks, showing PromptAgent consistently outperforms strong prompting and prompt optimization baselines by great margins. Our qualitative analysis further emphasizes PromptAgent's capability to distill insightful errors into expert-level prompts.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 8751
Loading