Keywords: Semantic Text Embedding, Interpretability, Question Generation, Question Answering
TL;DR: We introduce a general framework for producing interpretable semantic text embeddings across diverse tasks.
Abstract: Semantic text embedding is essential to many tasks in Natural Language Processing (NLP). While black-box models are capable of generating high-quality embeddings, their lack of interpretability limits their use in tasks that demand transparency. Recent approaches have improved interpretability by leveraging domain-expert-crafted or LLM-generated questions, but these methods rely heavily on expert input or well-prompt design, which restricts their generalizability and ability to generate discriminative questions across a wide range of tasks. To address these challenges, we introduce \algo{CQG-MBQA} (Contrastive Question Generation - Multi-task Binary Question Answering), a general framework for producing interpretable semantic text embeddings across diverse tasks. Our framework systematically generates highly discriminative, low cognitive load yes/no questions through the \algo{CQG} method and answers them efficiently with the \algo{MBQA} model, resulting in interpretable embeddings in a cost-effective manner. We validate the effectiveness and interpretability of \algo{CQG-MBQA} through extensive experiments and ablation studies, demonstrating that it delivers embedding quality comparable to many advanced black-box models while maintaining inherently interpretability. Additionally, \algo{CQG-MBQA} outperforms other interpretable text embedding methods across various downstream tasks. The source code is available at \url{https://github.com/dukesun99/CQG-MBQA}.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4360
Loading