Extending graph transformers with quantum computed aggregationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: graph neural networks, graph representation learning, quantum computing, graph transformers
TL;DR: A new Graph Neural Network architecture where the aggregation weights are computed with a quantum computer.
Abstract: Recently, efforts have been made in the community to design new Graph Neural Networks (GNN), as limitations of Message Passing Neural Networks became more apparent. This led to the appearance of Graph Transformers using global graph features such as Laplacian Eigenmaps. In our paper, we introduce a GNN architecture where the aggregation weights are computed using the long-range correlations of a quantum system. These correlations are generated by translating the graph topology into the interactions of a set of qubits in a quantum computer. The recent development of quantum processing units enables the computation of a new family of global graph features that would be otherwise out of reach for classical hardware. We give some theoretical insights about the potential benefits of this approach, and benchmark our algorithm on standard datasets. Although not being adapted to all datasets, our model performs similarly to standard GNN architectures, and paves a promising future for quantum enhanced GNNs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
8 Replies

Loading