RVMOS: Range-View Moving Object Segmentation Leveraged by Semantic and Motion FeaturesDownload PDFOpen Website

2022 (modified: 15 Nov 2022)IEEE Robotics Autom. Lett. 2022Readers: Everyone
Abstract: Detecting traffic participants is an essential and age-old problem in autonomous driving. Recently, the recognition of moving objects has emerged as a major issue in this field for safe driving. In this paper, we present RVMOS, a LiDAR Range-View-based Moving Object Segmentation framework that segments moving objects given a sequence of range-view images. In contrast to the conventional method, our network incorporates both motion and semantic features, each of which encodes the motion of objects and the surrounding circumstance of the objects. In addition, we design a new feature extraction module suitably designed for range-view images. Lastly, we introduce simple yet effective data augmentation methods: time interval modulation and zero residual image synthesis. With these contributions, we achieve a 19% higher performance (mIoU) with 10% faster computational time (34 FPS on RTX 3090) than the state-of-the-art method with the SemanticKitti benchmark. Extensive experiments demonstrate the effectiveness of our network design and data augmentation scheme.
0 Replies

Loading