CountXplain: Interpretable Cell Counting with Prototype-Based Density Map Estimation

Published: 27 Mar 2025, Last Modified: 30 May 2025MIDL 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Biomedical Imaging, Cell Counting, Deep Learning, Density Map Estimation, Interpretability
TL;DR: CountXplain, a prototype-based deep learning method, enables interpretable cell counting via density map estimation, achieving strong performance while providing visually grounded explanations validated by biologists.
Abstract:

Cell counting in biomedical imaging is pivotal for various clinical applications, yet the interpretability of deep learning models in this domain remains a significant challenge. We propose a novel prototype-based method for interpretable cell counting via density map estimation. Our approach integrates a prototype layer into the density estimation network, enabling the model to learn representative visual patterns for both cells and background artifacts. The learned prototypes were evaluated through a survey of biologists, who confirmed the relevance of the visual patterns identified, further validating the interpretability of the model. By generating interpretations that highlight regions in the input image most similar to each prototype, our method offers a clear understanding of how the model identifies and counts cells. Extensive experiments on two public datasets demonstrate that our method achieves interpretability without compromising counting effectiveness. This work provides researchers and clinicians with a transparent and reliable tool for cell counting, potentially increasing trust and accelerating the adoption of deep learning in critical biomedical applications. Code is available at https://github.com/NRT-D4/CountXplain.

Primary Subject Area: Interpretability and Explainable AI
Secondary Subject Area: Application: Other
Paper Type: Methodological Development
Registration Requirement: Yes
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 85
Loading