PointDP: Diffusion-driven Purification against 3D Adversarial Point CloudsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Adversarial Robustness, Point Cloud Classification, Diffusion Model
Abstract: 3D Point cloud is a critical data representation in many real-world applications, such as autonomous driving, robotics, and medical imaging. Although the success of deep learning further accelerates the adoption of 3D point clouds in the physical world, deep learning is notoriously vulnerable to adversarial attacks. Various defense solutions have been proposed to build robust models against adversarial attacks. In this work, we identify that the state-of-the-art empirical defense, adversarial training, has a major limitation in 3D point cloud models due to gradient obfuscation, resulting in significant degradation of robustness against strong attacks. To bridge the gap, we propose PointDP, a purification strategy that leverages diffusion models to defend against 3D adversarial attacks. Since PointDP does not rely on predefined adversarial examples for training, it can defend against diverse threats. We extensively evaluate PointDP on six representative 3D point cloud architectures and leverage sixteen strong and adaptive attacks to demonstrate its lower-bound robustness. Our evaluation shows that PointDP achieves significantly better (i.e., 12.6\%-40.3\%) adversarial robustness than state-of-the-art methods under strong attacks bounded by different $\ell_p$ norms.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
TL;DR: We propose PointDP, a diffusion-driven purification strategy to defend against adversarial point cloud. PointDP consistently achieves the strongest robustness under various attacks.
Supplementary Material: zip
33 Replies

Loading