Left Ventricle Contouring in Cardiac Images Based on Deep Reinforcement LearningDownload PDF

Published: 28 Feb 2022, Last Modified: 16 Jun 2024MIDL 2022Readers: Everyone
Keywords: left ventricle contouring, cardiac image segmentation, deep reinforcement learning
TL;DR: Object outlining in medical images with reinforcement learning
Abstract: Assessment of the left ventricle segmentation in cardiac magnetic resonance imaging (MRI) is of crucial importance for cardiac disease diagnosis. However, conventional manual segmentation is a tedious task that requires excessive human effort, which makes automated segmentation highly desirable in practice to facilitate the process of clinical diagnosis. In this paper, we propose a novel reinforcement-learning-based framework for left ventricle contouring, which mimics how a cardiologist outlines the left ventricle along a specific trajectory in a cardiac image. Following the algorithm of proximal policy optimization (PPO), we train a policy network, which makes a stochastic decision on the agent's movement according to its local observation such that the generated trajectory matches the true contour of the left ventricle as much as possible. Moreover, we design a deep learning model with a customized loss function to generate the agent's landing spot (or coordinate of its initial position on a cardiac image). The experiment results show that the coordinate of the generated landing spot is sufficiently close to the true contour and the proposed reinforcement-learning-based approach outperforms the existing U-net model even with limited training set.
Registration: I acknowledge that publication of this at MIDL and in the proceedings requires at least one of the authors to register and present the work during the conference.
Authorship: I confirm that I am the author of this work and that it has not been submitted to another publication before.
Paper Type: methodological development
Primary Subject Area: Segmentation
Secondary Subject Area: Detection and Diagnosis
Confidentiality And Author Instructions: I read the call for papers and author instructions. I acknowledge that exceeding the page limit and/or altering the latex template can result in desk rejection.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2106.04127/code)
5 Replies