TopicVAE: Topic-aware Disentanglement Representation Learning for Enhanced RecommendationOpen Website

Published: 01 Jan 2022, Last Modified: 11 May 2023ACM Multimedia 2022Readers: Everyone
Abstract: Learning disentangled representations that reflect user preference based on user behavior (implicit feedback, such as click and purchase) and content information (e.g., plot description, poster) has become a hot research topic in modern recommender systems. However, most existing methods considering content information are not well-designed to disentangle user preference features due to neglecting the diversity of user preference on different semantic topics of items, resulting in sub-optimal performance and low interpretability. To address this problem, we propose a novelTopic-aware Disentangled Variational AutoEncoder (TopicVAE) to learn disentangled representations for enhanced recommendation. Specifically, we first utilize an attention-based topic extraction to extract the topic-level item representations and topic-item probability distribution from item content, and then introduce variational autoencoder to infer topic-level disentangled user representations. To guide the learning of topic-level disentanglement, we present a topic-guided self-supervised contrastive loss to promote the otherness of different topics by introducing a neighborhood-based user representation as guidance. Besides, a heuristic regularization is designed to force each dimension of the disentangled representations to independently reflect a fine-grained factor of a specific topic (e.g., red or blue for color) for feature-level disentanglement. Extensive experimental studies on three public datasets show that TopicVAE significantly outperforms several state-of-the-art baselines. Further empirical experiments also illustrate the interpretability of disentangled representations learned by TopicVAE.
0 Replies

Loading