BERT Based Hierarchical Sequence Classification for Context-Aware Microblog Sentiment Analysis

Published: 01 Jan 2019, Last Modified: 22 Jan 2025ICONIP (3) 2019EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In microblog sentiment analysis task, most of the existing algorithms treat each microblog isolatedly. However, in many cases, the sentiments of microblogs can be ambiguous and context-dependent, such as microblogs in an ironic tone or non-sentimental contents conveying certain emotional tendency. In this paper, we consider the context-aware sentiment analysis as a sequence classification task, and propose a Bidirectional Encoder Representation from Transformers (BERT) based hierarchical sequence classification model. Our proposed model extends BERT pre-trained model, which is powerful of dependency learning and semantic information extracting, with Bidirectional Long Short Term Memory (BiLSTM) and Conditional Random Field (CRF) layers. Fine-tuning such a model on the sequence classification task enables the model to jointly consider the representation with the contextual information and the transition between adjacent microblogs. Experimental evaluations on a public context-aware dataset show that the proposed model can outperform other reported methods by a large margin.
Loading