Abstract: italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Objective:</i> The quantification of inspiratory patient effort in assisted mechanical ventilation is essential for the adjustment of ventilatory assistance and for assessing patient-ventilator interaction. The inspiratory effort is usually measured via the respiratory muscle pressure ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{mus}}$</tex-math></inline-formula> ) derived from esophageal pressure ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{es}}$</tex-math></inline-formula> ) measurements. As yet, no reliable non-invasive and unobtrusive alternatives exist to continuously quantify <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{mus}}$</tex-math></inline-formula> . <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Methods:</i> We propose a model-based approach to estimate <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{mus}}$</tex-math></inline-formula> non-invasively during assisted ventilation using surface electromyographic (sEMG) measurements. The method combines the sEMG and ventilator signals to determine the lung elastance and resistance as well as the neuromechanical coupling of the respiratory muscles via a novel regression technique. Using the equation of motion, an estimate for <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{mus}}$</tex-math></inline-formula> can then be calculated directly from the lung mechanical parameters and the pneumatic ventilator signals. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Results:</i> The method was applied to data recorded from a total of 43 ventilated patients and validated against <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{es}}$</tex-math></inline-formula> -derived <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{mus}}$</tex-math></inline-formula> . Patient effort was quantified via the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{mus}}$</tex-math></inline-formula> pressure-time-product (PTP). The sEMG-derived PTP estimated using the proposed method was highly correlated to <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{es}}$</tex-math></inline-formula> -derived PTP ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathsf{r}=\text{0.95}\pm \text{0.04}$</tex-math></inline-formula> ), and the breath-wise deviation between the two quantities was <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$-\text{0.83}\pm \text{1.73}\,\text{cmH}_\text{2}\text{O}\text{s}$</tex-math></inline-formula> . <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Conclusion:</i> The estimated, sEMG-derived <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{mus}}$</tex-math></inline-formula> is closely related to the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{\mathsf{es}}$</tex-math></inline-formula> -based reference and allows to reliably quantify inspiratory effort. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Significance:</i> The proposed technique provides a valuable tool for physicians to assess patients undergoing assisted mechanical ventilation and, thus, may support clinical decision making.
0 Replies
Loading