Keywords: mechinterp, mechanistic interpretability, interpretability, truth directions, LLM beliefs, large language model, llm
TL;DR: Investigation of the in-context behaviour of LLM 'truth directions'.
Abstract: Recent work has demonstrated that the latent spaces of large language models (LLMs) contain directions predictive of the truth of sentences. Multiple methods recover such directions and build probes that are described as uncovering a model’s “knowledge” or “beliefs”. We investigate this phenomenon, looking closely at the impact of context on the probes. Our experiments establish where in the LLM the probe’s predictions are (most) sensitive to the presence of related sentences, and how to best characterize this kind of sensitivity. We do so by measuring different types of consistency errors that occur after probing an LLM whose inputs consist of hypotheses preceded by (negated) supporting and contradicting sentences. We also perform a causal intervention experiment, investigating whether moving the representation of a premise along these truth-value directions influences the position of an entailed or contradicted sentence along that same direction. We find that the probes we test are generally context sensitive, but that contexts which should not affect the truth often still impact the probe outputs. Our experiments show that the type of errors depend on the layer, the model, and the kind of data. Finally, our results suggest that truth-value directions are causal mediators in the inference process that incorporates in-context information.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 271
Loading