What does the Knowledge Neuron Thesis Have to do with Knowledge?

Published: 16 Jan 2024, Last Modified: 16 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: language model, knowledge neuron, model editing, formal and function competence, syntax, fact
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We reassess the Knowledge Neuron (KN) Thesis: an interpretation of the mechanism underlying the ability of large language models to recall facts from a training corpus. This nascent thesis proposes that facts are recalled from the training corpus through the MLP weights in a manner resembling key-value memory, implying in effect that "knowledge" is stored in the network. Furthermore, by modifying the MLP modules, one can control the language model's generation of factual information. The plausibility of the KN thesis has been demonstrated by the success of KN-inspired model editing methods (Dai et al., 2022; Meng et al., 2022). We find that this thesis is, at best, an oversimplification. Not only have we found that we can edit the expression of certain linguistic phenomena using the same model editing methods but, through a more comprehensive evaluation, we have found that the KN thesis does not adequately explain the process of factual expression. While it is possible to argue that the MLP weights store complex patterns that are interpretable both syntactically and semantically, these patterns do not constitute "knowledge." To gain a more comprehensive understanding of the knowledge representation process, we must look beyond the MLP weights and explore recent models' complex layer structures and attention mechanisms.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 2106