Descent with Misaligned Gradients and Applications to Hidden Convexity

Published: 22 Jan 2025, Last Modified: 07 Apr 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: optimization, gradient descent, hidden convexity
Abstract: We consider the problem of minimizing a convex objective given access to an oracle that outputs "misaligned" stochastic gradients, where the expected value of the output is guaranteed to be correlated with, but not necessarily equal to the true gradient of the objective. In the case where the misalignment (or bias) of the oracle changes slowly, we obtain an optimization algorithm that achieves the optimum iteration complexity of $\tilde O(\epsilon^{-2})$; for the more general case where the changes need not be slow, we obtain an algorithm with $\tilde O(\epsilon^{-3})$ iteration complexity. As an application of our framework, we consider optimization problems with a "hidden convexity" property, and obtain an algorithm with $O(\epsilon^{-3})$ iteration complexity.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5828
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview