Does Learning from Decentralized Non-IID Unlabeled Data Benefit from Self Supervision?Download PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Decentralized Learning, Heterogeneous and Unlabeled Data, Federated Learning, Self-Supervised Learning, Representation Learning
TL;DR: We study decentralized learning with non-IID unlabeled data, and try to understand the robustness and communication efficiency of decentralized self-supervised learning, through extensive experiments and theoretical analysis.
Abstract: The success of machine learning relies heavily on massive amounts of data, which are usually generated and stored across a range of diverse and distributed data sources. Decentralized learning has thus been advocated and widely deployed to make efficient use of distributed datasets, with an extensive focus on supervised learning (SL) problems. Unfortunately, the majority of real-world data are unlabeled and can be highly heterogeneous across sources. In this work, we carefully study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL), specifically contrastive visual representation learning. We study the effectiveness of a range of contrastive learning algorithms under a decentralized learning setting, on relatively large-scale datasets including ImageNet-100, MS-COCO, and a new real-world robotic warehouse dataset. Our experiments show that the decentralized SSL (Dec-SSL) approach is robust to the heterogeneity of decentralized datasets, and learns useful representation for object classification, detection, and segmentation tasks, even when combined with the simple and standard decentralized learning algorithm of Federated Averaging (FedAvg). This robustness makes it possible to significantly reduce communication and to reduce the participation ratio of data sources with only minimal drops in performance. Interestingly, using the same amount of data, the representation learned by Dec-SSL can not only perform on par with that learned by centralized SSL which requires communication and excessive data storage costs, but also sometimes outperform representations extracted from decentralized SL which requires extra knowledge about the data labels. Finally, we provide theoretical insights into understanding why data heterogeneity is less of a concern for Dec-SSL objectives, and introduce feature alignment and clustering techniques to develop a new Dec-SSL algorithm that further improves the performance, in the face of highly non-IID data. Our study presents positive evidence to embrace unlabeled data in decentralized learning, and we hope to provide new insights into whether and why decentralized SSL is effective and/or even advantageous.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
25 Replies