An Empirical Study of Attention and Diversity for Adaptive Visual Token Pruning in Large Vision-Language Models

ICLR 2026 Conference Submission16166 Authors

Published: 26 Jan 2026, Last Modified: 26 Jan 2026ICLR 2026EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multimodal Large Language Models, Visual Token Pruning
Abstract: Large Vision-Language Models (LVLMs) have adopted visual token pruning strategies to mitigate substantial computational overhead incurred by extensive visual token sequences. While prior works primarily focus on either attention-based or diversity-based pruning methods, in-depth analysis of these approaches' characteristics and limitations remains largely unexplored. In this work, we conduct thorough empirical analysis using effective rank (erank) as a measure of feature diversity and attention score entropy to investigate visual token processing mechanisms and analyze the strengths and weaknesses of each approach. Our analysis reveals two insights: (1) Our erank-based quantitative analysis shows that many diversity-oriented pruning methods preserve substantially less feature diversity than intended; moreover, analysis using the CHAIR dataset reveals that the diversity they do retain is closely tied to increased hallucination frequency compared to attention-based pruning. (2) We further observe that attention-based approaches are more effective on simple images where visual evidence is concentrated, while diversity-based methods better handle complex images with distributed features. Building on these empirical insights, we show that incorporating image-aware adjustments into existing hybrid pruning strategies consistently improves their performance. We also provide a minimal instantiation of our empirical findings through a simple adaptive pruning mechanism, which achieves strong and reliable performance across standard benchmarks as well as hallucination-specific evaluations. Our project page available at https://anonymous.4open.science/w/AdaVTP-186A/
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 16166
Loading