Keywords: UNCERTAINTY, MLLMs, Misleading
Abstract: Ensuring that Multimodal Large Language Models (MLLMs) maintain consistency in their responses is essential for developing trustworthy multimodal intelligence. However, existing benchmarks include many samples where all MLLMs exhibit high response uncertainty when encountering misleading information, requiring even 5-15 response attempts per sample to effectively assess uncertainty. Therefore, we propose a two-stage pipeline: first, we collect MLLMs’ responses without misleading information, and then gather misleading ones via specific misleading instructions. By calculating the misleading rate, and capturing both correct-to-incorrect and incorrect-to-correct shifts between the two sets of responses, we can effectively metric the model’s response uncertainty. Eventually, we establish a Multimodal Uncertainty Benchmark (MUB) that employs both explicit and implicit misleading instructions to comprehensively assess the vulnerability of MLLMs across diverse domains. Our experiments reveal that all open-source and close-source MLLMs are highly susceptible to misleading instructions, with an average misleading rate exceeding 86%. To enhance the robustness of MLLMs, we further fine-tune all open-source MLLMs by incorporating explicit and implicit misleading data, which demonstrates a significant reduction in misleading rates
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3437
Loading