HG-XAI: human-guided tool wear identification approach through augmentation of explainable artificial intelligence with machine vision
Abstract: Identifying tool wear state is essential for machine operators as it assists in informed decisions for timely tool replacement and subsequent machining operations. As each wear state corresponds to a unique mitigation strategy, timely identification is vital while implementing solutions to minimize tool wear. The paper presents a novel Human Guided-eXplainable Artificial Intelligence (HG-XAI) approach for identifying the tool wear state by integrating human intelligence and eXplainable AI with a pre-trained Convolutional Neural Network (CNN), Efficient-Net-b0 model. The tool wear states were identified based on different wear mechanisms during the machining of IN718. The study considers four distinct tool wear states, i.e., Flank, Flank+BUE, Flank+Face, and Chipping, representing abrasion, adhesion, diffusion, and fracture wear mechanisms. The image-based datasets were created to depict various tool wear states by machining IN718 at varying surface speeds. The effectiveness of the proposed HG-XAI approach was evaluated by comparing its prediction accuracy with a standalone Efficient-Net-b0 model lacking human intelligence and XAI. Further, the scalability of the HG-XAI approach was examined by predicting wear states from images acquired at different cutting parameters. The results from the present study showed that the HG-XAI approach can predict the tool wear state with an accuracy of 93.08% and is scalable to variations in cutting conditions. Also, the proposed approach can be extended while developing vision-based on-machine tool wear monitoring systems.
External IDs:dblp:journals/jim/KumarAJDCM25
Loading