KGGen: Text To Knowledge Graph

Published: 06 Mar 2025, Last Modified: 07 Mar 2025ICLR 2025 Workshop Data Problems PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: text to knowledge graph, synthetic data for GNN, GNN, KG, knowledge graph
Abstract: Recent interest in building foundation models for KGs has highlighted a fundamental challenge: knowledge-graph data is relatively scarce. The best-known KGs are primarily human-labeled, created by pattern-matching, or extracted using early NLP techniques. While human-generated KGs are in short supply, automatically extracted KGs are of questionable quality. We present a solution to this data scarcity problem in the form of a text-to-KG generator (KGGen), a package that uses language models to create high-quality graphs from plaintext. Unlike other KG extractors, KGGen clusters related entities to reduce sparsity in extracted KGs. KGGen is available as a Python package (pip install NAME REDACTED), making it accessible to anyone with an OpenAI API key. Along with KGGen, we release the first benchmark that tests an extractor's ability to produce a useful KG from plain text. We benchmark our new tool against existing extractors and demonstrate far superior performance.
Submission Number: 34
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview