Light-Weighted Explainable Dual Transformer Network for Hyperspectral Image Classification

Published: 01 Jan 2023, Last Modified: 02 Nov 2024IGARSS 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Although light-weighted explainable deep learning techniques are critical for operational hyperspectral image (HSI) classification, it is very challenging to achieve these techniques due to difficulties to deal with the spatial-spectral complexity and coupling effect in HSI. Leveraging the excellent feature learning capability of the attention mechanism, this paper presents a spatial-spectral dual transformer (SSDT) network that decomposes the conventional spatial-spectral transformer operation into a spatial transformer and a spectral transformer, which not only reduce the model complexity, but also allows the use of self-attention to explain feature relevance. The proposed approach is tested on some benchmark HSI scenes and the results demonstrate that the proposed dual transformer network not only achieves new state-of-the-art performance due to its excellent feature extraction capability, but also enables the analysis and visualization of feature importance and decision making process.
Loading