Physics-Informed Model and Hybrid Planning for Efficient Dyna-Style Reinforcement Learning

Published: 15 May 2024, Last Modified: 14 Nov 2024RLC 2024EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement learning, Model-based reinforcement learning, Offline reinforcement learning, Physics-informed reinforcement learning, Neural ODE
Abstract: Applying reinforcement learning (RL) to real-world applications requires addressing a trade-off between asymptotic performance, sample efficiency, and inference time. In this work, we demonstrate how to address this triple challenge by leveraging partial physical knowledge about the system dynamics. Our approach involves learning a physics-informed model to boost sample efficiency and generating imaginary trajectories from this model to learn a model-free policy and Q-function. Furthermore, we propose a hybrid planning strategy, combining the learned policy and Q-function with the learned model to enhance time efficiency in planning. Through practical demonstrations, we illustrate that our method improves the compromise between sample efficiency, time efficiency, and performance over state-of-the-art methods.
Submission Number: 99
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview