Adversarial Feature Augmentation and Normalization for Visual Recognition

Published: 15 Jul 2022, Last Modified: 28 Feb 2023Accepted by TMLREveryoneRevisionsBibTeX
Abstract: Recent advances in computer vision take advantage of adversarial data augmentation to improve the generalization of classification models. Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings, instead of relying on computationally-expensive pixel-level perturbations. We propose $\textbf{A}$dversarial $\textbf{F}$eature $\textbf{A}$ugmentation and $\textbf{N}$ormalization (A-FAN), which ($i$) first augments visual recognition models with adversarial features that integrate flexible scales of perturbation strengths, ($ii$) then extracts adversarial feature statistics from batch normalization, and re-injects them into clean features through feature normalization. We validate the proposed approach across diverse visual recognition tasks with representative backbone networks, including ResNets and EfficientNets for classification, Faster-RCNN for detection, and Deeplab V3+ for segmentation. Extensive experiments show that A-FAN yields consistent generalization improvement over strong baselines across various datasets for classification, detection, and segmentation tasks, such as CIFAR-10, CIFAR-100, ImageNet, Pascal VOC2007, Pascal VOC2012, COCO2017, and Cityspaces. Comprehensive ablation studies and detailed analyses also demonstrate that adding perturbations to specific modules and layers of classification/detection/segmentation backbones yields optimal performance. Codes and pre-trained models are available in:
Submission Length: Long submission (more than 12 pages of main content)
Assigned Action Editor: ~Pascal_Poupart2
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Number: 46