Knowledge Amalgamation for Computational Science and Engineering

Published: 01 Jan 2018, Last Modified: 13 Nov 2024CICM 2018EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This paper addresses a knowledge gap that is commonly encountered in computational science and engineering: To set up a simulation, we need to combine domain knowledge (usually in terms of physical principles), model knowledge (e.g. about suitable partial differential equations) with simulation (i.e. numerics/computing) knowledge. In current practice, this is resolved by intense collaboration between experts, which incurs non-trivial translation and communication overheads. We propose an alternate solution, based on mathematical knowledge management (MKM) techniques, specifically theory graphs and active documents: Given a theory graph representation of the domain, model, and background mathematics, we can derive a targeted knowledge acquisition dialogue that supports the formalization of domain knowledge, combines it with simulation knowledge and – in the end – drives a simulation run – a process we call MoSIS (“Models-to-Simulations Interface System”). We present the MoSIS prototype that implements this process based on a custom Jupyter kernel for the user interface and the theory-graph-based Mmt knowledge management system as an MKM backend.
Loading