Keywords: AIGC Watermarking; Diffusion Models;
TL;DR: Employing a novel spherical mapping mechanism, we propose a novel lossless watermarking scheme for text-to-image diffusion models.
Abstract: Diffusion models have revolutionized image synthesis but raise concerns around content provenance and authenticity. Digital watermarking offers a means of tracing generated media, yet traditional schemes often introduce distributional shifts and degrade visual quality. Recent lossless methods embed watermark bits directly into the latent Gaussian prior without modifying model weights, but still require per-image key storage or heavy cryptographic overhead. In this paper, we introduce Spherical Watermark, an encryption‐free and lossless watermarking framework that integrates seamlessly with diffusion architectures. First, our binary embedding module mixes repeated watermark bits with random padding to form a high-entropy code. Second, the spherical mapping module projects this code onto the unit sphere, applies an orthogonal rotation, and scales by a chi-square-distributed radius to recover exact multivariate Gaussian noise. We theoretically prove that the watermarked noise distribution preserves the target prior up to third-order moments, and empirically demonstrate that it is statistically indistinguishable from a standard multivariate normal distribution. Adopting Stable Diffusion, extensive experiments confirm that Spherical Watermark consistently preserves high visual fidelity while simultaneously improving traceability, computational efficiency, and robustness under attacks, thereby outperforming both lossy and lossless approaches.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 14944
Loading