T-Projection: High Quality Annotation Projection for Sequence Labeling Tasks

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 FindingsEveryoneRevisionsBibTeX
Submission Type: Regular Long Paper
Submission Track: Multilinguality and Linguistic Diversity
Submission Track 2: Information Extraction
Keywords: annotation projection, low-resource, sequence labeling, text2text language models, machine translation, automatic data generation
TL;DR: T-Projection outperforms previous methods in annotation projection for sequence labeling, offering a solution to generate annotated data in low-resource languages.
Abstract: In the absence of readily available labeled data for a given sequence labeling task and language, annotation projection has been proposed as one of the possible strategies to automatically generate annotated data. Annotation projection has often been formulated as the task of transporting, on parallel corpora, the labels pertaining to a given span in the source language into its corresponding span in the target language. In this paper we present T-Projection, a novel approach for annotation projection that leverages large pretrained text2text language models and state-of-the-art machine translation technology. T-Projection decomposes the label projection task into two subtasks: (i) A candidate generation step, in which a set of projection candidates using a multilingual T5 model is generated and, (ii) a candidate selection step, in which the generated candidates are ranked based on translation probabilities. We conducted experiments on intrinsic and extrinsic tasks in 5 Indo-European and 8 low-resource African languages. We demostrate that T-projection outperforms previous annotation projection methods by a wide margin. We believe that T-Projection can help to automatically alleviate the lack of high-quality training data for sequence labeling tasks. Code and data are publicly available.
Submission Number: 3604
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview