Induced Disjoint Paths Without an Induced Minor

Published: 01 Jan 2025, Last Modified: 26 Jul 2025ICALP 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We exhibit a new obstacle to the nascent algorithmic theory for classes excluding an induced minor. We indeed show that on the class of string graphs - which avoids the 1-subdivision of, say, K₅ as an induced minor - Induced 2-Disjoint Paths is NP-complete. So, while k-Disjoint Paths, for a fixed k, is polynomial-time solvable in general graphs, the absence of a graph as an induced minor does not make its induced variant tractable, even for k = 2. This answers a question of Korhonen and Lokshtanov [SODA '24], and complements a polynomial-time algorithm for Induced k-Disjoint Paths in classes of bounded genus by Kobayashi and Kawarabayashi [SODA '09]. In addition to being string graphs, our produced hard instances are subgraphs of a constant power of bounded-degree planar graphs, hence have bounded twin-width and bounded maximum degree. We also leverage our new result to show that there is a fixed subcubic graph H such that deciding if an input graph contains H as an induced subdivision is NP-complete. Until now, all the graphs H for which such a statement was known had a vertex of degree at least 4. This answers a question by Chudnovsky, Seymour, and Trotignon [JCTB '13], and by Le [JGT '19]. Finally we resolve another question of Korhonen and Lokshtanov by exhibiting a subcubic graph H without two adjacent degree-3 vertices and such that deciding if an input n-vertex graph contains H as an induced minor is NP-complete, and unless the Exponential-Time Hypothesis fails, requires time 2^{Ω(√ n)}. This complements an algorithm running in subexponential time 2^{Õ(n^{2/3})} by these authors [SODA '24] under the same technical condition.
Loading