DVLA-RL: Dual-Level Vision–Language Alignment with Reinforcement Learning Gating for Few-Shot Learning

ICLR 2026 Conference Submission699 Authors

02 Sept 2025 (modified: 26 Nov 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Few-Shot Learning, Vision–Language Alignment, Large Language Models, Reinforcement Learning
Abstract: Few-shot learning (FSL) aims to generalize to novel categories with only a few samples. Recent approaches incorporate large language models (LLMs) to enrich visual representations with semantic embeddings derived from class names. However, they overlook progressive and adaptive alignment between vision and language from low-level to high-level semantics, resulting in limited semantic gains. To address these challenges, we propose Dual-level Vision–Language Alignment with Reinforcement Learning gating (DVLA-RL), which consists of Dual-level Semantic Construction (DSC) and RL-gated Attention (RLA). Specifically, DSC conditions LLMs on both class names and support samples to generate discriminative attributes, progressively selects the most relevant ones, and then synthesizes them into coherent class descriptions. This process provides complementary low-level attributes and high-level descriptions, enabling both fine-grained grounding and holistic class understanding. To dynamically integrate dual-level semantics along with the visual network layers, RLA formulates cross-modal fusion as a sequential decision process. A lightweight policy trained with episodic REINFORCE adaptively adjusts the contributions of self-attention and cross-attention to integrate textual and visual tokens. As a result, shallow layers refine local attributes and deep layers emphasize global semantics, enabling more precise cross-modal alignment. This achieves class-specific discrimination and generalized representations with merely a few support samples. DVLA-RL achieves new state-of-the-art performance across nine benchmarks in three diverse FSL scenarios.
Primary Area: transfer learning, meta learning, and lifelong learning
Submission Number: 699
Loading