CoDBench: A Critical Evaluation of Data-driven Models for Continuous Dynamical Systems

Published: 27 Oct 2023, Last Modified: 04 Dec 2023AI4Mat-2023 PosterEveryoneRevisionsBibTeX
Submission Track: Papers
Submission Category: AI-Guided Design
Keywords: neural operators, dynamical systems, differential equations
TL;DR: We present an extensive benchmarking of eleven models for solving differential equations.
Abstract: Continuous dynamical systems, characterized by differential equations, are ubiquitously used to model several important problems: plasma dynamics, flow through porous media, weather forecasting, and epidemic dynamics. Recently, a wide range of data-driven models has been used successfully to model these systems. However, in contrast to established fields like computer vision, limited studies are available analyzing the strengths and potential applications of different classes of these models that could steer decision-making in scientific machine learning. Here, we introduce CoDBENCH, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations. Specifically, we comprehensively evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures against 8 widely applicable benchmark datasets encompassing challenges from fluid and solid mechanics. We conduct extensive experiments, assessing the operators’ capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency. Interestingly, our findings highlight that current operators struggle with the newer mechanics datasets, motivating the need for more robust neural operators. All the datasets and codes are shared in an easy-to-use fashion for the scientific community. We hope this resource will be an impetus for accelerated progress and exploration in modeling dynamical systems. For codes and datasets, see: https://anonymous.4open.science/r/cod-bench-7525.
Digital Discovery Special Issue: Yes
Submission Number: 94
Loading