SparseFormer: Sparse Visual Recognition via Limited Latent Tokens

Published: 16 Jan 2024, Last Modified: 13 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: sparse visual recognition, vision transformer, computer vision, representation learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: A visual transformer understands images/videos with <=0.25x tokens in the latent space.
Abstract: Human visual recognition is a sparse process, where only a few salient visual cues are attended to rather than every detail being traversed uniformly. However, most current vision networks follow a dense paradigm, processing every single visual unit (such as pixels or patches) in a uniform manner. In this paper, we challenge this dense convention and present a new vision transformer, coined SparseFormer, to explicitly imitate human's sparse visual recognition in an end-to-end manner. SparseFormer learns to represent images using a highly limited number of tokens (e.g., down to $9$) in the latent space with sparse feature sampling procedure instead of processing dense units in the original image space. Therefore, SparseFormer circumvents most of dense operations on the image space and has much lower computational costs. Experiments on the ImageNet-1K classification show that SparseFormer delivers performance on par with canonical or well-established models while offering more favorable accuracy-throughput tradeoff. Moreover, the design of our network can be easily extended to the video classification task with promising performance with lower compute. We hope our work can provide an alternative way for visual modeling and inspire further research on sparse vision architectures. Code and weights are available at
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 2346