MABR: Multilayer Adversarial Bias Removal Without Prior Bias Knowledge

Published: 25 Feb 2025, Last Modified: 21 Jul 2025AAAI 2025EveryoneCC BY 4.0
Abstract: Models trained on real-world data often mirror and exacerbate existing social biases. Traditional methods for mitigating these biases typically require prior knowledge of the specific biases to be addressed, and the social groups associated with each instance. In this paper, we introduce a novel adversarial training strategy that operates withour relying on prior bias-type knowledge (e.g., gender or racial bias) and protected attribute labels. Our approach dynamically identif ies biases during model training by utilizing auxiliary bias detector. These detected biases are simultaneously mitigated through adversarial training. Crucially, we implement these bias detectors at various levels of the feature maps of the main model, enabling the detection of a broader and more nuanced range of bias features. Through experiments on racial and gender biases in sentiment and occupation classification tasks, our method effectively reduces social biases without the need for demographic annotations. Moreover, our approach not only matches but often surpasses the efficacy of methods that require detailed demographic insights, marking a significant advancement in bias mitigation techniques.
Loading