Keywords: Computer-Aided Design, Parametric Modeling, Machine Learning, Large Language Models, Programming Languages
Abstract: Large language models (LLMs) have been enormously successful in solving a wide variety of structured and unstructured generative tasks, but they struggle to generate procedural geometry in Computer Aided Design (CAD). These difficulties arise from an inability to do spatial reasoning and the necessity to guide a model through complex, long range planning required for generating complex geometry. We enable generative CAD Design with LLMs through the introduction of a solver-aided, hierarchical domain specific language (DSL) called AIDL, which offloads the spatial reasoning requirements to a geometric constraint solver. Additionally, we show that in the few-shot regime, AIDL outperforms even a language with in-training data (OpenSCAD), both in terms of generating visual results closer to the prompt and creating objects that are easier to post-process and reason about.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5332
Loading