Learning Hard Optimization Problems: A Data Generation PerspectiveDownload PDF

21 May 2021, 20:45 (edited 26 Oct 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: Combinatorial Optimization, Constrained Optimization, Supervised Learning, Data generation
  • TL;DR: A study on the challenges of generating training data for supervised training of neural networks as constraint optimization solvers
  • Abstract: Optimization problems are ubiquitous in our societies and are present in almost every segment of the economy. Most of these optimization problems are NP-hard and computationally demanding, often requiring approximate solutions for large-scale instances. Machine learning frameworks that learn to approximate solutions to such hard optimization problems are a potentially promising avenue to address these difficulties, particularly when many closely related problem instances must be solved repeatedly. Supervised learning frameworks can train a model using the outputs of pre-solved instances. However, when the outputs are themselves approximations, when the optimization problem has symmetric solutions, and/or when the solver uses randomization, solutions to closely related instances may exhibit large differences and the learning task can become inherently more difficult. This paper demonstrates this critical challenge, connects the volatility of the training data to the ability of a model to approximate it, and proposes a method for producing (exact or approximate) solutions to optimization problems that are more amenable to supervised learning tasks. The effectiveness of the method is tested on hard non-linear nonconvex and discrete combinatorial problems.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
19 Replies

Loading