EPNet: Learning to Exit with Flexible Multi-Branch NetworkDownload PDFOpen Website

Published: 01 Jan 2020, Last Modified: 15 May 2023CIKM 2020Readers: Everyone
Abstract: Dynamic inference is an emerging technique that reduces the computational cost of deep neural network under resource-constrained scenarios, such as inference on mobile devices. One way to achieve dynamic inference is to leverage multi-branch neural networks that apply different computation on input data by following different branches. Conventional research on multi-branch neural networks mainly targeted at improving the accuracy of each branch, and use manually designed rules to decide which input follows which branch of the network. Furthermore, these networks often provide a small number of exits, limiting their ability to adapt to external changes. In this paper, we investigate the problem of designing a flexible multi-branch network and early-exiting policies that can adapt to the resource consumption to individual inference request without impacting the inference accuracy. We propose a lightweight branch structure that also provides fine-grained flexibility for early-exiting and leverage Markov decision process (MDP) to automatically learn the early-exiting policies. Our proposed model, EPNet, was effective in reducing inference cost without impacting accuracy by choosing the most suitable branch exit. We also observe that EPNet achieved 3% higher accuracy with an inference budget, compared to state-of-the-art approaches.
0 Replies

Loading