Abstract: We consider synthetic aperture radar (SAR) image recovery and classification from sub-Nyquist samples, i.e., compressive SAR. Our approach is to first apply back-projection and then use a deep convolutional neural network (CNN) to de alias the result. Importantly, our CNN is trained to be agnostic to the subsampling pattern. Relative to the basis pursuit (i.e., sparsity-based) approach to compressive SAR recovery, our CNN-based approach is faster and more accurate, in terms of both image recovery MSE and downstream classification accuray, on the MSTAR dataset.
0 Replies
Loading