MD-TransUNet: TransUNet with Multi-attention and Dilated Convolution for Brain Stroke Lesion Segmentation

Published: 01 Jan 2023, Last Modified: 08 Apr 2025CollaborateCom (2) 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The accurate segmentation of stroke lesion regions holds immense significance in shaping treatment strategies and rehabilitation protocols. Due to the large difference in the volume of stroke lesion areas and the great similarity between lesion areas and normal tissues, most of the existing methods for lesion segmentation cannot deal with these problems well. This paper proposes a novel network named MD-TransUNet for the segmentation of stroke lesions, whose framework is based on the UNet architecture. To fully obtain deep image features, it uses ResNet50 for downsampling. MD (multi-dilated) module is employed as the skip connection to gain more receptive fields. Different receptive fields can adapt to varying volumes of lesion areas. Then, a feature extraction module with multi-level attention mechanism is designed using ConvLSTM, non-local spatial attention, and channel attention modules to suppress useless information expression in skip connections and upsampling processes while focusing more on effective spatial and channel information in features. The experiments show that our proposed network gets superior performance than benchmark methods and indicates the generalization and effectiveness of the proposed model.
Loading