Utilizing average symmetrical surface distance in active shape modeling for subcortical surface generation with slow-fast learningDownload PDFOpen Website

2022 (modified: 10 Nov 2022)EMBC 2022Readers: Everyone
Abstract: In this paper, we propose and validate an automatic pipeline for subcortical surface generation by making use of the average symmetrical surface distance (ASSD) loss in active shape modeling (ASM). A group of template surfaces are first generated via large deformation diffeomorphic metric mapping based surface deformation. ASM is then employed to obtain the mean shape and shape variation parameters of the template surfaces. To obtain the optimal shape variation parameters which best fit the target structure after acting upon the mean shape, a recently proposed derivative-free optimization method (the slow-fast learning method) is adopted. The ASSD loss, in addition to the typically utilized Dice similarity coefficient loss, is employed during the learning process to help enhance the boundary accuracy. We successfully validate the importance of the ASSD loss through ablation analysis. In addition, we show the effectiveness of the slow-fast learning method by comparing it with other state-of-the-art derivative-free optimization algorithms. Our proposed pipeline is found to be capable of yielding subcortical surfaces with high accuracy, correct anatomical topology, and sufficient smoothness. Clinical Relevance- This work provides a useful tool for generating subcortical surfaces which are important biomarkers for a variety of brain disorders.
0 Replies

Loading