Long-tail learning via logit adjustmentDownload PDF

28 Sep 2020 (modified: 25 Jan 2021)ICLR 2021 SpotlightReaders: Everyone
  • Keywords: long-tail learning, class imbalance
  • Abstract: Real-world classification problems typically exhibit an imbalanced or long-tailed label distribution, wherein many labels have only a few associated samples. This poses a challenge for generalisation on such labels, and also makes naive learning biased towards dominant labels. In this paper, we present a statistical framework that unifies and generalises several recent proposals to cope with these challenges. Our framework revisits the classic idea of logit adjustment based on the label frequencies, which encourages a large relative margin between logits of rare positive versus dominant negative labels. This yields two techniques for long-tail learning, where such adjustment is either applied post-hoc to a trained model, or enforced in the loss during training. These techniques are statistically grounded, and practically effective on four real-world datasets with long-tailed label distributions.
  • One-sentence Summary: Adjusting classifier logits based on class priors, either post-hoc or during training, can improve performance on rare classes.
  • Supplementary Material: zip
  • Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
10 Replies