Interpretable fuzzy systems modeling with cooperation between expert and induced knowledge (Modelado de sistemas borrosos interpretables con cooperación entre conocimiento experto e inducido)

Published: 01 Jan 2007, Last Modified: 21 May 2025undefined 2007EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Cita Alonso Moral, José María (2007). Interpretable fuzzy systems modeling with cooperation between expert and induced knowledge (Modelado de sistemas borrosos interpretables con cooperación entre conocimiento experto e inducido). Tesis (Doctoral), E.T.S.I. Telecomunicación (UPM). https://doi.org/10.20868/UPM.thesis.588. Descripción Título: Interpretable fuzzy systems modeling with cooperation between expert and induced knowledge (Modelado de sistemas borrosos interpretables con cooperación entre conocimiento experto e inducido) Autor/es: Alonso Moral, José María genmail('589jmam@mat.upm.es', '588','1') Director/es: Magdalena Layos, Luis genmail('589luis.magdalena@softcomputing.es', '588','1') https://orcid.org/0000-0001-7639-8906 Tipo de Documento: Tesis (Doctoral) Fecha de lectura: Octubre 2007 Materias: Telecomunicaciones Matemáticas Informática ODS: Industria, innovación e infraestructura Palabras Clave Informales: Fuzzy Logic, Expert and Induced Knowledge, Interpretability Escuela: E.T.S.I. Telecomunicación (UPM) Departamento: Ingeniería de Sistemas Telemáticos Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial Texto completo Vista Previa PDF (Portable Document Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader Descargar (1MB) | Vista Previa Resumen This thesis describes a new methodology for making easier the design process of interpretable knowledge bases. It considers both expert knowledge and knowledge extracted from data. The combination of both kinds of knowledge is likely to yield robust compact systems with a good trade-off between accuracy and interpretability. Fuzzy logic offers an integration framework where both types of knowledge are represented using the same formalism. However, as two knowledge bases may convey contradictions and/or redundancies, the integration process must be made carefully. Results obtained, in several well-known benchmark classification problems, show that our methodology leads to highly interpretable knowledge bases with a good accuracy, comparable to that achieved by other methods. Moreover, the new methodology proposed was applied to some real-world applications.All results presented in this work were reached using a free software tool (distributed under the terms of the GPL license) for generating and refining fuzzy knowledge bases. It was designed and developed as an important part of the thesis. It has been used as a test bed in order to check all theoretical aspects of the thesis. Más información ID de Registro: 588 Identificador DC: https://oa.upm.es/588/ Identificador OAI: oai:oa.upm.es:588 Identificador DOI: 10.20868/UPM.thesis.588 Depositado por: Doctor José María Alonso Moral Depositado el: 19 Oct 2007 Ultima Modificación: 10 Oct 2022 12:23 Acciones Estadísticas Exportar cita Editar (sólo personal del Archivo) // <!-- No script -->
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview