LINA: An LLM-driven Neuro-Symbolic Approach for Faithful Logical Reasoning

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Logical Reasoning, Neuro-Symbolic Approach, Hypothetical-Deductive Reasoning
Abstract: Large Language Models (LLMs) have exhibited remarkable potential across a wide array of reasoning tasks, including logical reasoning. Although massive efforts have been made to empower the logical reasoning ability of LLMs via external logical symbolic solvers, crucial challenges of the poor generalization ability to questions with different features and inevitable question information loss of symbolic solver-driven approaches remain unresolved. To mitigate these issues, we introduce **LINA**, a LLM-driven neuro-symbolic approach for faithful logical reasoning. By enabling an LLM to autonomously perform the transition from propositional logic extraction to sophisticated logical reasoning, LINA not only bolsters the resilience of the reasoning process but also eliminates the dependency on external solvers. Additionally, through its adoption of a hypothetical-deductive reasoning paradigm, LINA effectively circumvents the expansive search space challenge that plagues traditional forward reasoning methods. Empirical evaluations demonstrate that LINA substantially outperforms both established propositional logic frameworks and conventional prompting techniques across a spectrum of five logical reasoning tasks. Specifically, LINA achieves an improvement of 24.34% over LINC on the FOLIO dataset, while also surpassing prompting strategies like CoT and CoT-SC by up to 24.02%. Our code is available at https://anonymous.4open.science/r/nshy-4148/.
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8501
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview